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Abstract. We give a new proof of a Fourier interpolation result first proved by
Radchenko-Viazovska, deriving it from a vanishing result of the first cohomology
of a Fuchsian group with coefficients in the Weil representation.
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1. Introduction

Let S be the space of even Schwartz functions on the real line, and s the space
of sequences of complex numbers (an)n≥0 such that |an|nk is bounded for all k;
we write φ̂(k) =

∫
Rφ(x)e2πikxdx for the Fourier transform of φ ∈ S . In [RV19],

Radchenko-Viazovska proved the following beautiful “interpolation formula”:

Theorem 1.1. The map

Ψ : S → s⊕ s, φ 7→ (φ(
√
n), φ̂(

√
n))n≥0

is an isomorphism onto the codimension 1 subspace of s ⊕ s cut out by the Poisson
summation formula, i.e. the subspace of (xn, yn) defined by

∑
n∈Z xn2 =

∑
n∈Z yn2 .

The morphism Ψ is in fact a homeomorphism of topological vector spaces with
reference to natural topologies. We will give another proof of this theorem. The
first step of this proof is to notice that the evaluation points

√
n occur very naturally

in the theory of the oscillator representation defined by Segal–Shale–Weil. Using
this observation, the theorem can be reduced to computing the cohomology of a
certain Fuchsian group with coefficients in this oscillator representation, and here
we prove a more general statement:

Theorem 1.2. Let G be SL2(R) or a finite cover, Γ a lattice in G, W an irreducible
infinite-dimensional (g,K)-module, and W ∗−∞ the distributional globalization of its dual
(see (2.4)). Then H1(Γ ,W ∗−∞) is always finite dimensional, and in fact

(1) dimH1(Γ ,W ∗−∞) = multiplicity of W cl in cusp forms,
1
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where W cl is the complementary irreducible representation to W defined in §2.3.

The theorem can be contrasted with usual Frobenius reciprocity:

(2) dimH0(Γ ,W ∗−∞) = multiplicity of W in the space of automorphic forms,

Note that, in the passage from (1) to (2), “cusp forms” have been replaced by
“automorphic forms” and W cl by W . We also emphasize the surprising fact that,
in the theorem, the H1 takes no account of the topology on W ∗−∞: it is simply the
usual cohomology of the discrete group Γ acting on the abstract vector space W ∗−∞.
The corresponding determination for finite-dimensional W is the subject of auto-
morphic cohomology and is in particular completely understood, going back to
[Eic57].

A variant of Theorem 1.2, computing all the cohomology groups H i when
W is a spherical principal series representation, was already proved by Bunke
and Olbrich in the 1990s. We were unaware of this work when we first proved
Theorem 1.2; our original argument has many points in common with [BO98],
most importantly in our usage of surjectivity of the Laplacian both for analytic and
algebraic purposes, but also has some substantial differences of setup and emphasis.
We will correspondingly give two proofs: the first based on the results of [BO98],
and the second a shortened version of our original argument.

Some other interpolation consequences of Theorem 1.2 arise by replacing S by
other spaces of functions carrying natural representations: we discuss this in §6.4.
For example any function f ∈ C∞(R) for which g(x) := f (1/x) extends to a smooth
function at 0 is determined by f̂ (n), ĝ(n) for nonzero n ∈ 1

2Z, together with the
values and first derivatives of f ,g at 0.

1.1. Theorem 1.2 implies Theorem 1.1. We give an outline of the argument and
refer to §6 for details.

We pass first to a dual situation. Denote by S ∗ the space of tempered distribu-
tions, i.e. the continuous dual of S . For our purposes we regard it as a vector space
without topology.

Similarly, we define s∗ as the continuous dual of s, where s is topologized by
means of the norms ∥(bn)∥k := supn bn(1 + |n|)k ; thus, s∗ may be identified with
sequences (an) of complex numbers of polynomial growth, where the pairing of
(an) ∈ s∗ and (bn) ∈ s is given by the rule

∑
anbn. With this notation, the map

Ψ ∗ : s∗ ⊕ s∗→S ∗,

dual to Ψ takes the coordinate functions to the distributions δn, and δ̂n,

(an,bn)n≥0 7→
∑

anδn + bnδ̂n,

where
δn(φ) = φ(

√
n), δ̂n(φ) = φ̂(

√
n).

Then Theorem 1.1 is equivalent to the assertion:

(Dual interpolation theorem): Ψ ∗ is surjective and its kernel con-
sists precisely of the “Poisson summation” relation.

The equivalence of this statement and Theorem 1.1 is not a complete formality
because of issues of topology: see (47) for an argument that uses a theorem of
Banach.
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The next key observation is that the space of distributions spanned by δn and
by δ̂n occur in a natural way in representation theory.

The closure of the span of δn (respectively, the closure of the span
of δ̂n) coincide with the e-fixed and f -fixed vectors on the space S ∗
of tempered distributions, where

(3) e =
(

1 2
0 1

)
and f =

(
1 0
2 1

)
act on S ∗ according to the oscillator representation (see §6.1 for de-
tails), namely by multiplication by e2πix2

and its Fourier transform
respectively.

Let Γ be the group generated by e and f inside SL2(R): it is a free group, of index
two in Γ (2), and it lifts to G (which we take in this case to be the double cover of
SL2(R)). As explicated in §6, computations of dimensions of modular forms and
Theorem 1.2 yield

(4) dimH0(Γ ,S ∗) = 1, dimH1(Γ ,S ∗) = 0.

The final observation is that
The kernel and cokernel of (S ∗)e⊕(S ∗)f →S ∗ compute, respectively,
the H0 and H1 of Γ acting on S ∗.

This follows from a Mayer-Vietoris type long exact sequence that computes the
cohomology of the free group Γ , namely,

(5) 0→H0(Γ ,S ∗)→H0 (⟨e⟩,S ∗)⊕H0 (⟨f ⟩,S ∗)→H0(1,S ∗)→H1(Γ ,S ∗)→ ·· ·

Combined with (4), we see that S ∗ = (S ∗)e + (S ∗)f , i.e. the desired surjectivity of Ψ ∗,
and that the intersection of (S ∗)e and (S ∗)f is one-dimensional; this corresponds
exactly to the Poisson summation formula.

Another way to look at this is the following. The Poisson summation formula
is an obstruction to surjectivity in Theorem 1.1 and is closely related to the invari-
ance of the distribution

∑
δn ∈ S ∗ by Γ , i.e. the existence of a class in the zeroth

cohomology of Γ on S ∗. The above discussion shows a less obvious statement: the
obstruction to injectivity in Theorem 1.1 is precisely the first cohomology of Γ on S ∗.

1.2. The proof of Theorem 1.2. The analogue of Theorem 1.2 when W is finite-
dimensional and Γ \G is compact is (by now) a straightforward exercise; as noted,
the ideas go back at least to [Eic57], and the general case is documented in [BW00];
the noncompact case is less standard but also well-known, see e.g. [Cas84] and
[Fra98] for a comprehensive treatment.

The main complication of our case is that the coefficients are infinite-dimensional
and one might think this renders the question unmanageable. The key point is
that W is irreducible as a G-module. This says that, “relative to G”, it is just as
good as a finite-dimensional representation.

We will present two proofs of Theorem 1.2:
• The first proof, in Section 3, relies on the work of Bunke-Olbrich who

computed the cohomology of lattices in SL2(R) with coefficients in (the dis-
tribution globalization of a) principal series representation. We summarize
a sketch of the argument of [BO98] for the convenience of the reader, and
also because their argument as written does not cover the situation we need.
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To deduce Theorem 1.2 from these results then requires us to pass from a
principal series to a subquotient, which we do in a rather ad hoc way.

• The second proof is our original argument prior to learning of the work of
Bunke-Olbrich just mentioned. However, given the content of [BO98], we
have permitted ourselves to abridge the most tedious parts of our original
argument, and reproduce here in detail the part that is perhaps most
distinct from [BO98] – namely, we express the desired cohomology groups
in terms of certain Ext-groups of (g,K)-modules and then compute these
explicitly. Although we do not give full details here, this proof is quite
explicit, and in particular it should be possible to produce an interpolation
basis by explicating every step.

In both arguments the surjectivity of a Laplacian type operator plays an essential
role. Such results are known since the work of Casselman [Cas84], and in their
work, Bunke–Olbrich prove and utilize such a result both at the level of G and Γ \G.
We include a self-contained proof of such a result for Γ \G in §5.

1.3. Questions. It is very interesting to ask about the situation where Γ is not a
lattice. Indeed, if one were to ask about an interpolation formula with evaluation
points 1.1

√
n, one is immediately led to similar questions for a discrete but infinite

covolume subgroup of SL2(R). Kulikov, Nazarov and Sodin [KNS23] have recently
shown very general results about Fourier uniqueness that imply, in particular, that
evaluating f and f̂ at 1.1

√
n do not suffice to determine f ; it would be interesting

to see if one can extract more precise information here by using the nonabelian
harmonic analysis of the current paper.

Perhaps a more straightforward question is to an establish an isomorphism

(6) H i(Γ ,W ∗−∞) ≃ Extig,K (W,space of automorphic forms for Γ \G),

which is valid for general lattices Γ in semisimple Lie groups G and general irre-
ducible (smooth, moderate growth) representations V of G. Bunke and Olbrich
have proved this in the cocompact case and our original argument proceeded by
establishing the case i = 1 for general lattices in SL2(R).

1.4. Acknowledgements. We are very grateful to Matthew Emerton for his interest
and input on the paper. These discussions led us to the work of Bunke and Olbrich.
We also thank Henri Darmon and Joshua Mundinger for useful comments and
suggestions.

M.G.G. was supported by the CRM and McGill University. A.V. was supported
by an NSF-DMS grant during the preparation of this paper.

2. Covering groups of SL2(R)

Let q ≥ 1 be a positive integer and let G be the q-fold covering of the group
SL2(R), i.e. G is a connected Lie group equipped with a continuous homomorphism
G→ SL2(R) with kernel of order q. This characterizes G up to unique isomorphism
covering the identity of SL2(R).

Denote by g the shared Lie algebra of G and of SL2(R) and exp : g → G the
exponential map. Also denote by K the preimage of SO2(R) inside G; it is abstractly
isomorphic as topological group to S1 = R/Z and we fix such an isomorphism
below.
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The quotient G/K is identified with the hyperbolic plane H, on which G acts
by isometries. Define the norm of g ∈ G to be ∥g∥ := edistH(i,gi). Equivalently, we

could use
∥∥∥∥(a bc d )∥∥∥∥ =

√
a2 + b2 + c2 + d2 since either of these two norms is bounded

by a constant multiple of the other.

2.1. Lie algebra. Let H,X,Y be the standard basis for g:

X =
(

0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

We also use κ = i(X −Y ), 2p =H − i(X +Y ), 2m =H + i(X +Y ), or, in matrix form:

(7) κ =
(

0 i
−i 0

)
, 2p =

(
1 −i
−i −1

)
, 2m =

(
1 i
i −1

)
.

We have κ = ik, where k generates the Lie algebra of K . The isomorphism K ≃ R/Z
will be normalized to take the element 1 in the Lie algebra of R/Z to the element k.

The elements p,m and κ satisfy the commutation relations

(8) [p,m] = κ, [κ,p] = 2p, [κ,m] = −2m,

which say that p and m raise and lower κ-weights by 2. The Casimir element C in
the universal enveloping algebra determined by the trace form is given by any of
the equivalent formulas:

(9) C =
H2

2
+XY +YX =

κ2

2
+ pm+mp =

κ2

2
+κ+ 2mp =

κ2

2
−κ+ 2pm.

2.2. Iwasawa decomposition. There is a decomposition

(10) G =NAK

where A and N are the connected Lie subgroups of G with Lie algebra R.H and
R.X respectively. We will parameterize elements of A via a(y) := exp( 1

2 log(y)H), so
that a(y) projects to the diagonal element of SL2(R) with entries y±1/2. We will also
write nx = exp(xX).

2.3. (g,K)-modules. We recall that a (g,K) module means a g-module equipped
with a compatible continuous action of K . Equivalently, it is described by the
following data:

• For each ζ ∈ q−1Z, a vector space Vζ giving the ζ-weight space of K , so that
κ acts on Vζ by ζ;

• maps p : Vζ → Vζ+2 and m : Vζ → Vζ−2 satisfying [p,m] = κ.
We recall some facts about classification, see [HT12] for details. Irreducible,

infinite-dimensional (g,K)-modules belong to one of three classes; in each case, the
weight spaces Vζ have dimension either zero or 1.

• Highest weight modules of weight ζ; these are determined up to iso-
morphism by the fact that their nonzero weight spaces occur in weights
{ζ,ζ − 2,ζ − 4, . . . }. Vζ is killed by p. One computes using (9) that on such
modules, the Casimir element C acts by ζ(ζ + 2)/2.

• Lowest weight modules of weight ζ; these are determined up to isomor-
phism by the fact that their nonzero weight spaces occur in weights {ζ,ζ +
2,ζ + 4, . . . }. Vζ is killed by m. Again, (9) shows that the Casimir element C
acts by ζ(ζ − 2)/2.
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• Doubly infinite modules, in which the weights are of the form ζ + 2Z for
ζ ∈ 1

qZ.

Definition 2.1. For an infinite dimensional irreducible (g,K)-module V we define the
complementary irreducible representation V cl to be

V cl =


the irreducible (g,K)-module with highest weight ζ − 2 V has lowest weight ζ
the irreducible (g,K)-module with lowest weight ζ + 2 V has highest weight ζ
V else

In §4 we use the following key fact about (g,K)-modules.

Proposition 2.2. Let V be an irreducible infinite-dimensional (g,K)-module with
infinitesimal character λ. Then, for any (g,K)-module W :

(a) If C −λ is surjective on W , then Ext1
(g,K)(V ,W ) = 0.

(b) If W is irreducible, Ext1
(g,K)(V ,W ) is one-dimensional if W ≃ V cl , and is zero

otherwise.

Proof. We will prove these statements in the case where V is a lowest weight
module, which is the case of our main application. The same proof works with
slight modifications for V a highest weight or doubly infinite module: in every
case, one takes an arbitrary lift of a generating vector, and modifies it using the
surjectivity of an appropriate operator.

We prove (a). Take V to be generated by a vector vζ of lowest weight ζ with
mvζ = 0. This implies by the classification above that

(11) λ =
ζ(ζ − 2)

2
.

Take an extension W → E→ V ; to give a splitting we must lift vζ to a vector in E of
K-type ζ killed by m. Arbitrarily lift vζ to ṽζ ∈ Eχ. Then mṽζ ∈Wζ−2 and it suffices
to show that it lies inside the image of m : Wζ → Wζ−2, for we then modify the
choice of ṽζ by any preimage to get the desired splitting. By (9) and (11) we see
that C −λ :Wζ−2→Wζ−2 agrees with 2mp. Since it is surjective, it follows that in
particular m :Wζ →Wζ−2 is surjective.

We pass to (b). Suppose W is irreducible; then Ext1
(g,K)(V ,W ) vanishes unless W

has the same C-eigenvalue as V . The argument above exhibits an injection of

Ext1
(g,K)(V ,W ) ↪→Wζ−2/mWζ

and inspection of K-types amongst those irreducibles with the same C-eigenvalue as
W shows that this also vanishes unlessW ≃ V cl , in which case it is one-dimensional.
It remains only to exhibit a nontrivial extension of V by V cl , which is readily done
by explicit computation. □

2.4. Globalizations. A globalization of a (g,K)-module V is any continuous G-
representation on a topological vector space V such that

(
V
)
K

= V . We will consider
two instances of this: the smooth, or Casselman-Wallach globalization V∞, and the
distributional globalization V−∞.

Following [Cas89], the representation V∞ is the unique globalization of V as a
moderate growth Fréchet G-representation. By definition, such a representation is
a Fréchet space F (necessarily topologized with respect to a family of seminorms)
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such that for any seminnorm ∥ · ∥α , there is an integer Nα and a seminorm ∥ · ∥β for
which

∥gv∥α ≤ ∥g∥Nα∥v∥β .
The distributional globalization is a dual notion. Indeed, denote by V ∗ the

K-finite part of the dual of V , equipped with the contragredient (g,K)-module
structure. Then

(12) (V∞)∗ = (V ∗)−∞

where on the left-hand side, the dual is understood as continuous.
We recall an explicit construction of V−∞, see [BO98, §2-3], although it will not

be directly used in the rest of the paper: Given V ∗ as above, and let W ∗ ⊂ V ∗ be
a finite-dimensional K-stable subspace that generates V ∗ as a (g,K)-module. Let
(W ∗)∗ =:W ⊂ V viewed as a K-representation, and consider the space

EW =
{
f ∈ C∞(G,W ) | f (gk) = k−1f (g), g ∈ G, k ∈ K

}
.

Then the image of V under the map i : V → EW characterized by ⟨i(v)(g),w∗⟩ :=
⟨v,gw∗⟩ (v ∈ V , w∗ ∈W ∗) belongs to the space AGW of sections of moderate growth,
i.e. of functions f ∈ EW such that for every differential operator X ∈U (g), there is
R = R(f ,X) for which

(13) ∥f ∥X,R = sup
g∈G

|Xf (g)|
∥g∥R

<∞.

We note that this differs from the notion of uniform moderate growth, where one
requires R to be taken independently of X.

The space AGW is topologized as the direct limit of Fréchet spaces with respect
to the seminorms ∥ · ∥X,R. The map i is injective since W ∗ generates V ∗, and the
distributional globalization is defined as

V−∞ := i(V ) ⊂ S∞E0.

3. First proof of Theorem 1.2: resolutions of principal series.

In this section, we derive Theorem 1.2 from the results of Bunke–Olbrich [BO98],
adapting the arguments of Section 9 therein to non-spherical principal series. The
two essential ingredients of this argument are the following points established by
Bunke–Olbrich, which we shall use as “black boxes”:

• acyclicity of Γ acting on spaces of moderate growth functions on G/K , and
• surjectivity of a Laplace-type operator acting on these spaces.

Fix a Casimir eigenvalue λ, and a lattice Γ ⊂ G. Given ζ a one-dimensional
representation of K , define the following spaces of smooth functions (compare with
2.4, and see (13) in particular for the notion of moderate growth, which is not the
same as uniform moderate growth):

AG, (resp. A) = moderate growth functions on G (resp. on Γ \G).(14)

AGζ , Aζ = subspace with right K-type ζ: f (gk) = f (g)ζ(k).

AGζ (λ), Aζ(λ) = subspace with right K-type ζ and Casimir eigenvalue λ.

Cuspζ(λ) = subspace of Aζ(λ) consisting of cuspforms.
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We will first prove a variant of Theorem 1.2 for principal series. Let B be the
preimage of the upper triangular matrices inside G; we may write

B =MAN

where A and N are as in (10), and M = ZK (A) ≃ Z/2qZ. Denote by ξ ∈ C the
character of A sending a(y) 7→ yξ . Given a pair of characters (σ,ξ) of M and A
respectively let

(15) H = {f : G→ C | f (mang) = aξ−1σ−1(m)f (g), f K-finite}
be the Harish-Chandra module of K-finite vectors in the corresponding principal
series representation. This depends on σ and ξ, but to simplify the notation we
will not include them explicitly.

Denote by H−∞ its distributional completion (§2.4); explicitly, if we identify H
as above with functions on K which transform on the left under the character σ−1,
then H−∞ is the corresponding space of distributions on K .

In the following proposition, we will assume that H is either irreducible, or
decomposes as

(16) 0→ V̄ →H → V → 0.

where both the subrepresentation and quotient are irreducible (g,K)-modules.

Proposition 3.1. Let G be the degree q connected cover of SL2(R). Denote by λ the
eigenvalue by which C acts on HK ; then there are natural isomorphisms

H0(Γ ,H−∞) ≃ Aζ(λ)

H1(Γ ,H−∞) ≃ Cuspζ(λ)

H i(Γ ,H−∞) = 0 for i ≥ 2.

where ζ is any K-weight generating the dual (g,K)-module H ∗ (equivalently: ζ belongs
to the K-weights of the largest irreducible quotient of that dual, i.e. to V̄ ∗ or to H ∗

according to whether H ∗ is reducible or not.)

Proof. In §9 of [BO98] this result is proven in the case of q = 1 and the trivial
K-type. We will outline the argument to make clear that it remains valid in the
situation where we now work, i.e., permitting a covering of SL2(R) and an arbitrary
K-type.

Fix v∗ ∈H ∗ of K-type ζ. Then the rule sending D ∈H−∞ to the function D(gv∗)
on G induces an isomorphism

(17) H−∞ ≃ AGζ (λ).

We will outline a direct proof of this isomorphism. Injectivity, at least, follows
readily: if D lies in the kernel, it would annihilate the (g,K)-module grenerated by
v∗, which is all of H ∗, and by continuity D is then zero.

Surjectivity is less formal. First one checks finiteness on K-finite functions: one
must check that a function f of fixed right- and left- K-type, and with a specified
Casimir eigenvalue, occurs in the image of the map above. However, f is uniquely
specified up to constants by this property: using the decomposition G = KAK , the
Casimir eigenvalue amounts to a second order differential equation for the function
y 7→ f (ay) for y ∈ (1,∞), and of the two-dimensional space of solutions only a
one-dimensional subspace extends smoothly over y = 1; see [Kit17, p. 12-13] for an
explicit description both of the differential equation and a hypergeometric basis
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for the solutions.1 It follows from this uniqueness that f must agree with D(gv∗)
where D and v∗ match the left- and right- K-types of f . To pass from surjectivity
onto K-finite vectors to surjectivity, we take arbitrary f ∈ AGζ (λ) and expands as
a sum

∑
ξ fξ of left K-types. Each fξ has a preimage vξ according to the previous

argument; so one must verify that
∑
ξ vξ converges inside H−∞, and for this it is

enough to show that ∥vξ∥ grows polynomially with respect to |ξ | (here we compute
∥vξ∥ as the L2-norm restricted to K in (15)). For this one must “effectivize” the
previous argument: The moderate growth property of f implies a bound of the
form |fξ(g)| ≤ c∥g∥N , uniform in ξ. On the other hand, fξ = vξ(gv∗), and such a
matrix coefficient always is not too small:

(18) |vξ (gv∗)| ≥ (1 + |ξ |)−M∥vξ∥ for some ∥g∥ ≤ (1 + |ξ |)M .
Such lower estimates on matrix coefficients can be obtained by keeping track of
error bounds in asymptotic expressions. They are developed in greater generality in
the Casselman–Wallach theory, see e.g. Corollary 12.4 of [BK14] for a closely related
result. Combining (18) with the upper bound on fξ shows that ∥vξ∥ ≤ c(1+|ξ |)MN+M

as desired.
Therefore, H−∞ is the kernel of

(19) AGζ
C−λ−→AGζ ,

in the notation of (14). We now invoke surjectivity of a Laplace operator: the
morphism C −λ of (20) is surjective, by [BO98, Theorem 2.1]; and consequently
(20) is in fact a resolution of H−∞. Moreover, [BO98, Theorem 5.6] asserts that
the higher cohomology of Γ acting on AGζ vanishes; it is for this argument that
Bunke and Olbrich use “moderate growth” rather than “uniform moderate growth.”
Consequently, the Γ -cohomology of H−∞ can be computed by taking Γ -invariants
on the complex (20):

(20) (AGζ )Γ
C−λ−→ (AGζ )Γ .

Clearly, the H0 here coincides with Aζ(λ). On the other hand, the image of C −λ
contains the orthogonal complement of cusp forms (see [BO98, Thm. 6.3], cf.
Proposition 4.1), and so the H1 coincides with the cokernel of C −λ acting on cusp
forms; there we can pass to the orthogonal complement and identifyH1 ≃ Cuspζ(λ)
as desired.2 □

The following lemma will be useful in the sequel. We omit the proof.

Lemma 3.2. Let ζ be, as in Proposition 3.1, a K-weight on H ∗ which generates the
latter as (g,K)-module; fix vζ ∈H ∗ nonzero of weight ζ. For any (g,K)-module V , there
is an isomorphism

(21) Hom(g,K)(H
∗,V )→ Vζ(λ), f 7→ f (vζ),

where Vζ(λ) is the subspace of Vζ killed by C −λ.

For reducible principal series as in (16), we prove:

1There are other references in the mathematical literature but Kitaev explicitly considers the
universal cover.

2In fact, C −λ is adjoint to C − λ̄, but the kernel of the latter of either is only nonzero if λ is real, so
we do not keep track of the complex conjugate.
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Proposition 3.3. Let H−∞ with infinitesimal character λ decompose as in (16). Then

H1(Γ ,V−∞) ≃H1(Γ ,H−∞) ≃ Cuspζ(λ).

Proof. We will deduce the result from Proposition 3.1 together with the long exact
sequence in cohomology associated to (the distributional globalization of) (16) and
that of the principal series H̄ such that

(22) 0→ V → H̄ → V̄ → 0,

i.e. for which the roles of subrepresentation and quotient are swapped between
V̄ and V . Such a principal series can be obtained by replacing the role of upper
triangular matrices by lower triangular matrices above. We first consider the long
exact sequence associated to (the distribution globalization of) (16), namely:

0→H0(Γ , V̄−∞)→H0(Γ ,H−∞)
Ω→H0(Γ ,V−∞)→(23)

→H1(Γ , V̄−∞)→H1(Γ ,H−∞)
Π→H1(Γ ,V−∞)→ 0.

We have used here that the next group H2(Γ , V̄−∞) of the sequence vanishes: it
is isomorphic to H3(Γ ,V−∞) by the long exact sequence associated to (22) and
Proposition 3.1, and that H3 vanishes always. Indeed, let Γ be the image of Γ →
SL2(R), and µ ⩽ Γ the kernel of Γ → Γ ; if V is a C[Γ ]-module then H i(Γ ,V ) =
H i(Γ ,V µ), and, being a lattice in SL2(R), the virtual cohomological dimension of Γ
is at most 2.

We claim that the penultimate map Π of (23) is an isomorphism; this will
conclude the proof, using Proposition 3.1. Our claim will follow if we can prove
that

dim cokernel Ω ≥ dim H1(Γ , V̄−∞).

By applying Proposition 3.1 to H̄ , we find that H1(Γ , V̄−∞) is a quotient of
Cuspχ(λ), for χ a weight in V ∗. It therefore suffices to show that

(24) dim cokernel Ω ≥ dim Cuspχ(λ).

The codomain H0(Γ ,V−∞) of Ω is identified, by means of Frobenius reciprocity
(2), with the space of homomorphisms from the dual (g,K) module V ∗ to the K-
finite vectors AK in the space of automorphic forms. Contained in this space is
the corresponding space H0(Γ ,V−∞)cusp of cuspidal homomorphisms, that is to say,
those homomorphisms that are valued in cusp forms. Note that all homomorphisms
from H̄ ∗ to the space of cusp forms factor through V ∗ by semisimplicity of the
space of cusp forms (which in turn follows by unitarity). Applying Lemma 3.2 to
H̄ , then, identifies H0(Γ ,V−∞)cusp with Cuspχ(λ). Therefore, (24) is equivalent to
the assertion that dim cokernel Ω ≥ dimH0(Γ ,V−∞)cusp; so it is enough to check
that H0(Γ ,V−∞)cusp intersects trivially the image of Ω.

We must prove, then, that no homomorphism from V ∗ to CuspK can be extended
to a homomorphism from H ∗ to AK . Suppose, then, that f : H ∗ →AK is a (g,K)-
module homomorphism whose restriction to V ∗ is nonzero and has cuspidal image.
We now make use of the orthogonal projection map from all automorphic forms
to cusp forms, which exists because one can sensibly take the inner product of
a cusp form with any function of moderate growth. Post-composing f with this
projection gives a morphism from H ∗ to the semisimple (g,K)-module CuspK ; since
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H ∗ is a nontrivial extension of V̄ ∗ by V ∗, this morphism is necessarily trivial on the
subrepresentation V ∗, a contradiction. □

Now let us deduce Theorem 1.2. We divide into cases according to how the
representation W of the theorem can be fit into a principal series:

• W is an irreducible principal series, equivalently, W is doubly-infinite. In
this case, W cl =W , and combining Proposition 3.1 and Lemma 3.2 gives
the statement of Theorem 1.2.

• W is an irreducible subquotient of a principal series with two composition
factors. In this case we can suppose that W = V ∗ with notation as in (16).
In that notation we have W ∗ = V , and W cl = V̄ ∗. Proposition 3.3 gives
H1(Γ ,V−∞) ≃ Cuspζ(λ), and Lemma 3.2 shows that Cuspζ(λ) is identified
with the space of (g,K)-homomorphisms fromH ∗ to the space of cusp forms;
by semisimplicity of the target such a homomorphism factors through the
irreducible quotient V̄ ∗ =W cl . This proves Theorem 1.2 in this case.

• W is an irreducible subquotient of a principal series with more than two
composition factors. In this case, W is necessarily a highest- or lowest-
weight module factoring through SL2(R), and there is an exact sequence

(25) F→H →D,

where F is finite-dimensional and D is the sum of W ∗ and another highest-
or lowest- weight module. Here, W cl = F and Theorem 1.2 is equivalent
to the vanishing of H1(Γ ,W ∗−∞). In the case of a discrete series that factors
through PSL2(R), this vanishing follows from [BO98, Prop. 8.2], and the
remaining case of an “odd” discrete series is handled by the same argument.
Namely, use the long exact sequence associated to (25); the argument of
Proposition 3.1 shows that H1(Γ ,H−∞) = 0, and also H2(Γ ,F) = 0, so also
H1(Γ ,D−∞) = 0 and so its summand H1(Γ ,W ∗−∞) also vanishes.

4. Second proof of Theorem 1.2: extensions of (g,K)-modules

Our original proof of Theorem 1.2 proceeds by a reduction to a computation in
the category of (g,K) modules. The two essential ingredients of this argument are
the following points:

(a) the Casselman–Wallach theory which gives a canonical equivalence be-
tween suitable categories of topological G-representations and algebraic
(g,K)-modules.

(b) surjectivity of a Laplace-type operator acting, now, on spaces of moderate
growth functions on Γ \G;

We will not prove (a), although we will briefly sketch an elementary proof of what
we use from it. We will prove (b) in the next section.

Let λ be the eigenvalue by which the Casimir C ∈ Z(g) of (9) acts on W (the
irreducible (g,K)-module from the statement of Theorem 1.2). We will use the
notation A from (14) for the space of smooth, uniform moderate growth functions
on Γ \G, which is to say that there exists R such that for all X ∈U,

(26) ∥f ∥X,R = sup
g∈G

|Xf (g)|
∥g∥R

<∞.
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(compare with (13), and beware that we are using the same notation as in Section 3,
but for a slightly different space). We use uniform moderate growth because it
interfaces more readily with the Casselman–Wallach theory; by contrast, §3 used
moderate growth because this is used in the acyclicity result mentioned after (20).

Also consider following the subspaces of A:

Aλ−nil = K-finite functions on which C −λ acts nilpotently,

Cusp(λ) = subspace of Aλ−nil consisting of cusp forms.

The precise form of (b) we will use is this:

Proposition 4.1. The image of the map C −λ :AK →AK is precisely the subspace of
AK orthogonal to Cusp(λ).

This is almost [BO98, Theorem 6.3], except there the argument is for moderate
growth functions rather than uniform moderate growth; they state on op. cit.
p. 73 that the same proof remains valid in the uniform moderate growth. Also,
Cassleman proves [Cas84, Theorem 4.4], for the trivial K-type, that C is surjective
on spaces of Eisenstein distributions, from which a similar result can be extracted.
Since the above statement is in a sense the crux of the argument, and neither
reference gives it in precisely this form, we have given a self-contained proof in
§5. Our proof follows a slightly different strategy and is perhaps of independent
interest.

4.1. Proof of Theorem 1.2: reduction to (g,K) extensions. We begin the proof of
Theorem 1.2 assuming Proposition 4.1. We begin by constructing an isomorphism

(27) H1(Γ ,W ∗−∞) ≃ Ext1
G(W∞,A),

where W∞ is the smooth globalization of W .
On the left, we have the ordinary group cohomology of the discrete group Γ

acting on the vector space W ∗−∞, without reference to topology. On the right here
we use a topological version of Ext defined as follows: present A as a directed
union lim−−→A(R) of moderate growth Fréchet G-representations (see§2.4) obtained
by imposing a specific exponent of growth R in (26). The right hand side is
then defined to be the direct limit lim−−→Ext1

G(W∞,A(R)), where the elements of

each Ext group are represented by isomorphism classes of short exact sequences3

A(R)→?→W∞, with ? a moderate growth Fréchet G-representation and the maps
are required to be continuous.

The statement (27) is then a version of Shapiro’s lemma in group cohomology. Let
us spell out the relationship: forG1 ≤ G2 of finite index, andW a finite-dimensional
G1-representation, Shapiro’s lemma supplies an isomorphism

(28) H1(G1,W
∗)

(a)
≃ H1(G2, I

G2
G1
W ∗)

(b)
≃ H1(G2, (I

G2
G1

C)⊗W ∗)
(c)
≃ Ext1

G2
(W, IG2

G1
C).

Here IG2
G1

is the induction from G1 to G2, and we used in (a) Shapiro’s lemma in its

standard form; at step (b) the projection formula IG2
G1
W ∗ ≃ IG2

G1
C⊗W ∗, and at step

(c) the relationship between group cohomology and Ext-groups which results by
deriving the relationship HomG2

(W,V ) = (V ⊗W ∗)G2 .

3Here, the notion of “exact sequence” is the usual one - there is no reference to the topology.
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Our statement (27) is precisely analogous to the isomorphism of (28) with Γ

playing the role of G1, G playing the role of G2, and with topology inserted. It can
be proven simply by writing down the explicit maps from far left to far right in
(28) and checking that they respect topology and are inverse to one another. There
is only one point that is not formal: to prove that there is a well-defined map from
left to right, one needs to check that the extension of G-representations arising
by “inflating” a cocycle j : Γ →W ∗−∞ indeed has moderate growth. This requires
growth bounds on j, and these follow by writing out j(γ), for arbitrary γ ∈ Γ , in
terms of the values of j on a generating set using the cocycle relation.We observe
that some “automatic continuity” argument of this nature is needed, because, in
the statement of (27), the topology of W figures on the right hand side but not on
the left.

Next, observe that there is a natural map

(29) Ext1
G(W∞,A)−→Ext1

(g,K)(W,Aλ−nil),

where the right-hand side is taken in the category of (g,K)-modules. This “natural
map” associates to an extension A→ E→W∞ the underlying sequence of K-finite
vectors in each of A,E,W∞ which are annihilated by some power of C −λ; that the
resulting sequence remains exact follows from surjectivity of C −λ in the form of
Proposition 4.1. One must verify that each element w ∈W killed by (C −λ)n has a
preimage in EK of the same type. To do this, choose an arbitrary preimage e; then
(C −λ)ne belongs to the image of AK , and can be written as f1 + f2 with f1 ∈ Cusp(λ)
and f2 ∈ Cusp(λ)⊥. Choose, by Proposition 4.1, a class e′ ∈ AK with (C −λ)ne′ = f2;
then e − e′ still lifts w and is now killed by (C −λ)n+1.

Next, we show that the map of (29) is in fact an isomorphism. Injectivity of
the resulting map on Ext-groups follows using the Casselman-Wallach theory of
canonical globalization; the result is formulated in exactly the form we need in
[BK14, Prop 11.2], namely, a splitting at the level of (g,K)-modules automatically
gives rise to a continuous splitting. 4 Surjectivity does not follow at once from the
Casselman–Wallach theory because A is “too big,” however, in the case at hand,
it can be checked directly, because we will see below that all the (g,K)-exts are
induced from a certain finite length direct summand Cuspλ to which the results
of [Cas89] (in the form of the equivalence of categories, see [Wal92, Corollary,
§11.6.8]) can be applied.

Remark 4.2. Together, the isomorphisms (27) and (29) give an isomorphism

(30) H1(Γ ,W ∗−∞) ≃ Ext1
(g,K)(W,Aλ−nil).

The analogous statement for Γ cocompact has been proved in much greater generality –
for all Exts, by Bunke-Olbrich [BO97, Theorem 1.4]. However, our argument does not
generalize, at least in any routine way, to higher Exts: it is not immediately clear to us
how to generalize the cocycle growth argument to H i for i > 1.

4We sketch the idea of the argument to emphasize that what we use is relatively elementary: Given
an abstract (g,K)-module splitting W →A we must show that it does not distort norms too far. Fixing a
generating set w1, . . . ,wr for W , one shows using bounds similar to (18) that any vector w ∈W can be
written as

∑
hi ⋆ wi where hi are bi-K-finite functions on G and the norms of the hi are not too large in

terms of the norms of w. This permits one to bound the size of ϕ(w) =
∑
hi ⋆ ϕ(wi ).



14 MATHILDE GERBELLI-GAUTHIER AND AKSHAY VENKATESH

4.2. Evaluation of the (g,K)-ext. No conclude the proof of Theorem 1.2, we now
compute the (g,K)-extension on the right-hand side of (30). The space Cusp(λ)
decomposes as a finite direct sum of irreducible (g,K)-modules; this follows from
the similar L2 statement, see [Bor97, §8]. Since each of these irreducible summands
has infinitesimal character λ, their underlying (g,K)-modules can belong to at
most three isomorphism classes, as described in §2.3; among these is W cl , the
“complementary (g,K)-module to W ” from Definition 2.1.

Accordingly we decompose

(31) Aλ−nil = Cusp(λ)⊥ ⊕ (W cl)m ⊕
⊕

V⊂Cusp(λ)
V;W cl

V ,

where Cusp(λ)⊥ is the orthogonal complement of Cusp(λ) within Aλ−nil, and m is
the multiplicity of W cl in Cusp(λ).

The splitting (31) induces a similar direct sum splitting of Ext1
(g,K)(W,Aλ−nil).

But Proposition 4.1 implies that C −λ defines a surjection from Cusp(λ)⊥ to itself,
and so, applying Proposition 2.2,

Ext1
(g,K)(W,Cusp(λ)⊥) = 0.

The remaining two summands evaluate via the second part of Proposition 2.2 to
Cm and 0 respectively. This yields

Ext1
(g,K)(W,Aλ−nil) ≃ Cm,

which concludes the proof, remembering that (27) and (29) identified the left-hand
side with H1(Γ ,W ∗−∞) and that m is the multiplicity of W cl in the space of cusp
forms.

5. Surjectivity of Casimir on the space of automorphic forms.

The primary analytic ingredient in both proofs is the surjectivity of a Laplacian-
type operator; in the first proof this is used both on G and on Γ \G, and in the
second proof it is used only on Γ \G. We will now give a self-contained proof of the
second version, Proposition 4.1. As noted after that Proposition, this statement is
essentially in the literature, but given its importance it seemed appropriate to give
a self-contained proof.

We follow here the notation of §4; in particular, A is defined using the notion of
uniform moderate growth. It is enough to show that every function orthogonal to
Cusp(λ) occurs in the image of C −λ :AK →AK . The basic strategy is as follows:

(i) In §5.4, we decompose elements of AK into functions “near the cusp” and
functions of rapid decay, and

(ii) in §5.5, we construct preimages under C −λ for functions in each subspace.
Doing this “near the cusp” amounts to solving an ODE; the construction of
preimages for functions of rapid decay is carried out via L2-spectral theory.

Since C − λ commutes with K , it suffices to prove the Proposition with AK
replaced by its subspace Aζ with K-type ζ. In what follows, we will regard ζ as
fixed.
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5.1. Cusps. It is convenient to fix once and for all a fundamental domain for Γ \G:
we take

(32) F = {z ∈H : d(z, i) ≤ d(γz, i) for all γ ∈ Γ − {e}},

which describes a convex hyperbolic polygon which is (up to boundary) a funda-
mental domain for Γ acting on H; its pullback to G via g 7→ g · i is a fundamental
domain for Γ \G, which will often be denoted by the same letter. In particular, F
can be decomposed in the following way, where the sets intersect only along their
boundary:

(33) F = F0 ∪C1 ∪C2 ∪ · · · ∪ Ch
with F0 compact and each Ci a cusp, that is to say, a G-translate of a region of the
form {x+ iy : a ≤ x ≤ b,y ≥ Y0}. In the Iwasawa cordinates G =NAK , the pullback
of Ci to G therefore has the form

(34) C̃i = gi · {nxayk : a ≤ x ≤ b,y ≥ Y0, k ∈ K}.

The map C̃i → Γ \G is injective on the interior of C̃i . We will often identify C̃i with
its image in Γ \G.

5.2. The constant term and moderate growth functions in the cusp. Let f ∈ AK .
Fix a cusp i; we write ΓNi for Γ ∩ giNg−1

i . The constant term f Ni : giNg
−1
i \G −→ C

is defined by the rule

(35) f Ni : x 7→ average value of f (gintg
−1
i x) for t ∈ R.

The function f (gintg
−1
i x) is periodic in t and therefore the notion of its average

value makes sense. Moreover, the above map is right G-equivariant. A basic (and
elementary) fact is that f Ni is asymptotic to f inside C̃i ; indeed the function f − f Ni
has rapid decay in C̃i , as proved in [Bor97, 7.5]. Here, we say that a function
J : C̃i → C has rapid decay if, for any X1, ...,Xr ∈ g and any positive integer N we have

(36) sup
C̃i

∥g∥N |X1 . . .XrJ(g)| <∞.

Let us consider more generally functions on G that are left N -invariant and have
fixed right K-type ξ.

Such a function may be identified, by means of pullback by y 7→ ay , with func-
tions on R+. The condition that such a function has finite norm under ∥ · ∥X,R for
all X, with notation as in (26), is equivalent to asking that

(37)
∣∣∣∣∣(y ddy )jf

∣∣∣∣∣ < Cj · (|y|−1 + |y|)R

for all j. That this condition is necessary is seen by applying (26) to Xi ∈ Lie(A). To
see that it is sufficient, we fix U belonging to the universal enveloping algebra; now,
for any k ∈ K , we may write U as a sum of terms

∑
ci(k)(Ad(k−1)UN,i)(Ad(k−1)UA,i)UK,i

where the terms belong to fixed bases for the universal enveloping algebra of N,A
and K respectively, and the coefficients ci(k) are bounded independently of k. This
permits us to bound Uf (nak) and we see that the bound (37) suffices.

This motivates the following definition: Fix Y0 > 0 and denote by P≥Y0
the space

of smooth functions on R supported in y > Y0 satisfying (37) for some R. Because
of the restriction that y > Y0, this is equivalent to ask that all its derivatives are
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“uniformly” polynomially bounded, i.e. there is R such that, for all j, there exists a
constant Cj with

(38)

∣∣∣∣∣∣djfdyj
∣∣∣∣∣∣ < Cj (2 + |y|)R−j .

5.3. The subspace Eisλ of Eisenstein series with eigenvalue λ. To each cusp Cj ,
we attach an Eisenstein series Ej (s), which is an Aζ-valued meromorphic function
of the complex variable s, characterized by the fact that for Re(s)≫ 1 it equals:

Ej (s,g) =
∑

γ∈Γ iN \Γ

H(g−1
i γg)s,

where H is the unique function on G with right K-type ζ, invariant on the left by
N , and on A given by ay 7→ y.

The resulting vector-valued function is holomorphic when Re(s) = 1/2 and we
denote its value at s = 1/2 + it by Ejt . In words, Ejt is the unitary Eisenstein series of
K-type ζ with parameter t ∈ R attached to the jth cusp of Γ \G. Finally, denoting by
λt the eigenvalue of C on Ejt , let

Eis(λ) :=
⊕
j

{
span of all Eisenstein series Ejt , with t ∈ R, such that λt = λ

}
,

so that Eis(λ) is a finite-dimensional subspace of Aζ annihilated by C −λ. However,
if t 7→ λt − λ happens to have a double zero, we include in the above space the
derivative d

dtE
j
t , for this is also annihilated by C − λ. The Casimir eigenvalue

of Ej(s,g) is quadratic in s and therefore the dimension of Eis(λ) is at most twice
the number of cusps.

5.4. Decomposition ofAζ . Consider the space of L2-eigenfunctions of the Lapla-
cian with eigenvalue λ; call this Discrete(λ).

Lemma 5.1. Let C̃i be the cusps for a fundamental domain for the action of Γ on G as in
(33). Then every f ∈ Aζ , perpendicular to Cusp(λ), can be written as the sum

f = fs +
∑
i

fci

where:

(i) The function fs is smooth, has rapid decay at all the cusps, and is perpendicular
to Eis(λ)⊕Discrete(λ).

(ii) Each fci is supported in the cusp C̃i and, with reference to the identification (34):

C̃i = gi · {nxayk : a ≤ x ≤ b,y ≥ Y0, k ∈ K}.

has the form nak 7→ P (y)ζ(k), where P belongs to the space P≥Y0
described after

(38).

Although f is only assumed orthogonal to cusp forms, we arrange, in a manner
very convenient for our application, that fs is orthogonal also to Eis(λ) and all of
Discrete(λ). This is possible because there is a lot of freedom in the decomposition.
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Proof. This is a straightforward cut-off process; the only delicacy is to ensure that fs
is in fact perpendicular to Eis(λ) and Discrete(λ). We start from f Ni , the constant
term along the ith cusp as defined in (35). Take ϕi ,ψi smooth functions on R+
where:

• ϕi = 0 for y < Y0 and ϕi = 1 for y > 2Y0.
• ψi is supported in (Y0,2Y0).

We consider both ϕi and ψi as functions on C̃i described by the rules ginxayk 7→
ϕi(y)ζ(k) and ginxayk 7→ ψi(y)ζ(k) respectively. Now put fs = f −

∑
i(ϕif

N
i +ψi) so

that

(39) f = fs +
∑(

ϕif
N
i +ψi

)
︸        ︷︷        ︸

fci

.

We will show that, for suitable choice of ψi , (39) is the desired expression. All
the properties except perpendicularity to Discrete(λ)⊕Eis(λ) follow from general
properties of the constant term discussed in §5.2. In particular, the uniform bound
on P follows from that of f .

Observe that ϕif
N
i and ψi are both perpendicular to all cuspidal functions and

in particular to Cusp(λ), because they both arise from functions on giNg
−1
i ∩ Γ \G

which are left invariant by giNg
−1
i . Therefore fs is also perpendicular to Cusp(λ).

It remains to choose ψi in such a way that fs is indeed perpendicular to the
orthogonal complement of Cusp(λ) inside Discrete(λ)⊕Eis(λ); call this space Ẽis(λ),
as it is (potentially) a finite-dimensional enlargement of Eis(λ).

To do this, for each E ∈ Ẽis(λ) we should have〈∑
i

f −ϕif Ni ,E
〉

=
∑
i

〈
ψi ,ENi

〉
C̃i
.

The right-hand side can be considered as a linear mapping from the vector space of
possible ψi to the finite-dimensional dual Ẽis(λ)∗ of the vector space Ẽis(λ). It is
enough to show this mapping is surjective, and for this it is enough to show that its
dual is injective. But the dual map is identified with the constant term:

Ẽis(λ)→
⊕
i

C∞(Ti ,2Ti), E 7→ (ENi )(giay)

and this is injective: if ENi vanished in (Ti ,2Ti) then it – being real-analytic –
vanishes identically; if this is so for all i, then E would be a cusp form, contradicting
the definition of Ẽis(λ). □

5.5. Surjectivity of C −λ. We now show surjectivity of C −λ on each of the two
pieces of Aζ corresponding to the decomposition of Lemma 5.1.

5.5.1. Surjectivity on the cusp.

Lemma 5.2. The operator C −λ is surjective on the space of functions on G which:

• are left N -invariant and have fixed right K-type ζ, and
• lie in the space P≥Y0

described before (38) when pulled back to R+ by means of
y 7→ ay .
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Proof. Let f : R+→ C be extended to a function F : G→ C by left N -invariance and
with fixed κ-weight equal to ζ, so that F has the form:

F(nay exp(θk)) = f (y)eiζθ .

Observe that for arbitrary X1 ∈ n = Lie(N ) and X2, . . . ,Xk ∈ g we have

(X1 . . .XkF) is identically zero on NA.

Indeed, the left-hand side is the partial derivative ∂t1 . . .∂tk of F(naet1X1 . . . etkXk )
evaluated at ti = 0, which vanishes since F is independent of t1. From this observa-
toin, it follows that the action of the operator C = H2

2 −H + 2XY on f agrees with
the action of H2/2−H on f (y). Since H acts on f via via 2y d

dy , we get that C −λ
acts as the differential operator:

2y2 d
2

dy2 −λ.

We show that C−λ is surjective on P≥Y0
explicitly: we construct g with (C−λ)g = f

via the method of variation of parameters.

The homogeneous solutions to the equation
(
2y2 d2

dy2 −λ
)
g = 0 are given by yp1 , yp2 ,

where the pi are roots of 2p(1− p) +λ = 0. We assume that p1 , p2, the p1 = p2 case
is similar. A solution to (C −λ)g = f can then be found by taking

g = a1(y)yp1 + a2(y)yp2 ,

where the ai satisfy
dai
dy

= (−1)i
1/2

p1 − p2
f (y)y−pi−1.

Taking f as in (38), we take ai = ±pi−p2
2

∫ y
Y0
f (y)y−pi−1 for y > Y0 and ai(y) = 0 for

y ≤ Y0. By construction, if f belongs to P≥Y0
then so does ai and so also g. □

5.5.2. Surjectivity on functions of rapid decay.

Proposition 5.3. The image of the map C −λ :Aζ →Aζ contains all functions of rapid
decay that are orthogonal to Eis(λ) and Discrete(λ).

Proof. Let f be such a function. We fix an orthonormal basis {ϕi} for the discrete
spectrum of C −λ on L2(Γ \G)ζ , where the subscript means that we restrict to K-
type ζ. For constants µj depending only on the width of the various cusps, we have,
following e.g. [Bor97, §13],

(40) f =
∑
i

⟨f ,ϕi⟩ϕi +µj
∑
j

∫
t≥0
⟨f ,Ejt ⟩E

j
tdt.

A priori this is an equality inside L2. Let λi and λt be, respectively, the eigenvalues
of C −λ on ϕi and Et . Define f̄ ∈ L2 by the rule

(41) f̄ =
∑
λi,0

⟨f ,ϕi⟩
λi

ϕi +
∑
j

∫
t∈R

⟨f ,Ejt ⟩
λt

E
j
tdt,

(one readily sees that the right hand side is convergent in L2). We claim that f̄ has
uniform moderate growth and

(C −λ)f̄ = f
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as desired.
In fact, the summation and integrals in both (40) and (41) are absolutely conver-

gent, uniformly on compact sets, and they define functions of uniform moderate
growth; moreover, any derivative Xf̄ coincides with the corresponding summation
inserting X inside the sums and integrals. The proof of these claims follow from
nontrivial, but relatively standard, estimates. We summarize these estimates, with
references. A convenient general reference for all the analysis required is Iwaniec
[Iwa95]; it works only with the trivial K-type, but analytical issues are exactly the
same if we work with a general K-type.

Let λi be the (C −λ)-eigenvalue of ϕi . Then the easy upper bound in Weyl’s law
(cf. [Iwa95, (7.11), Corollary 11.2] for the sharp Weyl law in the spherical case; the
same proof applies with K-type) gives:

(42) #{i : |λi | ≤ T } ≤ const · T 2.

For any r ≥ 0 we have an estimate

(43) |⟨f ,ϕi⟩| ≤ cr (1 + |λi |)−r

arising from integration by parts and Cauchy-Schwarz (using ∥ϕi∥L2 = 1). Finally,
there is a constant N with the following property: for any invariant differential
operator X ∈U of degree d, we have a bound

(44) |Xϕi(g)| ≤ (1 + |λi |)d+N ∥g∥N .
This can be derived from a Sobolev estimate, again using the normalization ∥ϕi∥L2 =
1; see e.g [BR02, (3.7)]. These estimates suffice to treat the cuspidal summand of
(41).

Now we discuss the integral summand of (41). The function ⟨f ,Et⟩ is holomor-
phic in a neighbourhood of t ∈ iR, as follows from holomorphicity of t 7→ Et and
absolute convergence of the integral. Moreover, by assumption, this holomorphic
function vanishes when λt = 0. In particular the function ⟨f ,Et⟩/λt is holomorphic,
too; this follows from what we just said if the quadratic function t 7→ λt has distinct
zeroes, and in the case when it has a double zero t0 we recall that the derivatives
dEt
dt |t=t0 also belong to Eis(λ). Therefore, the integrand in (41) is at least locally inte-

grable in t. To examine absolute convergence of the integral, one reasons exactly as
for cusp forms, but rather than pointwise estimates in t one only looks at averages
over T ≤ t ≤ T + 1. In place of the L2-normalization of ϕi we have the following
estimate ∫ T+1

T
dt

∫
ht≤Y
|Ejt (g)|2≪ T 2 + log(Y )

where ht ≤ Y means that we integrate over the complement of the set y ≥ Y in
each cusp. This bound is derived from the Maass–Selberg relations (cf. [Iwa95,
Proposition 6.8 and (6.35) and (10.9)]) and average bounds on the scattering matrix
(equation (10.13), op. cit.). From this, one obtains in the same way as the cuspidal

case bounds on
∫ T+1
T
|⟨f ,Ejt ⟩|2 and

∫ T+1
T
|XEjt |2 that are of the same quality as (42)

and (43) and the same analysis as for the cuspidal spectrum goes through. □

5.6. Proof of the proposition. We now prove Proposition 4.1. Write f = fs +
∑
fci

as in Lemma 5.1. By Lemma 5.2 and Proposition 5.3 there are functions gi , g ∈ Aζ
with

(C −λ)gi = fci , (C −λ)g = fs,
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where, in the case of gi , we use Lemma 5.2 to produce a function on C̃i , and then
extend it by zero to get an element of Aζ . Then g +

∑
i gi is the desired preimage

of f under C −λ. □

6. Interpolation and cohomology.

We will recall background on the Segal-Shale-Weil representation (see [LV13]
for details) necessary to explain why the foregoing results imply the interpolation
formula of Radchenko and Viazovska. We have already outlined the argument in
§1.1 and what remains is to explain in detail where (4) comes from.

6.1. The Weil representation. Let L2(R)+ be the Hilbert space of even square
integrable functions on R, and let S be the subspace of even Schwartz functions,
i.e. even smooth functions f such that

(45) sup
x∈R

∣∣∣∣∣xn dmdxm f (x)
∣∣∣∣∣ <∞

for any pair (m,n) of non-negative integers. Let G be the degree 2 cover of SL2(R).
There is a unique unitary representation of G on L2(R), the Weil (or oscillator)
representation, for which S is precisely the subspace of smooth vectors and such
that the action of g on S is given by:

X ·φ(x) = −iπx2φ(x), Y ·φ(x) =
−i
4π

∂2

∂x2φ(x), H ·φ(x) =
(
x
d
dx

+
1
2

)
φ(x).

It then follows that κ = i(X −Y ) acts by

κ ·φ(x) =
(
πx2 − 1

4π
∂2

∂x2

)
φ(x)

The normalization ensures that the action of G is unitary and that the rela-
tion σXσ−1 = Y is preserved, where σ : S → S is the Fourier transform:

σ (φ)(ξ) = φ̂(ξ) :=
∫

R
φ(x)e−2πixξdx.

Moreover, with respect to the seminorms of (45), the topological vector space S has
the structure of a moderate growth Fréchet representation of G.

The vector v1/2 := e−πx
2

has κ-weight 1/2 and Casimir eigenvalue −3/8. The
other K-finite vectors in S are spanned by its Lie algebra translates; they have the
form q(x)e−πx

2
for q an even polynomial, and have weights 1

2 ,
5
2 ,

9
2 , · · · .

6.2. The lattice Γ . If x ∈ g is nilpotent, the projection map identifies exp(Rx) ⊂
G with the corresponding 1-parameter subgroup of SL2(R). In particular, the
map G → SL2(R) splits over any one-parameter unipotent subgroup; thus the
groups of upper and lower-triangular matrices have distinguished lifts in G.

In particular, the elements e =
(

1 2
0 1

)
and f =

(
1 0
2 1

)
defined in (3) have distin-

guished lifts ẽ, f̃ to G. They act in the Weil representation by:

(46) ẽ ·φ(x) = e−2πix2
φ(x), f̃ ·φ(x) = σ ẽσ−1φ(x).

Let Γ ∈ SL2(Z) be the subgroup freely generated by e and f . It is the subgroup of
Γ (2) whose diagonal entries are congruent to 1 mod 4, and is conjugate to Γ1(4).
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Lemma 6.1. There is a splitting Γ → G which extends the splitting over the two
subgroups ⟨e⟩ and ⟨f ⟩. The image of Γ in this splitting are precisely the elements of its
preimage leaving fixed the distribution Q :=

∑
n∈Z δn2 – see 1.1 for the definition of δn.

Proof. The lift ẽ of e to G fixes Q. By Poisson summation, so does the lift f̃ of f .
The group Γ̃ generated by ẽ and f̃ surjects onto Γ with kernel of size at most two.
But Γ̃ fixes Q, and the two lifts of any g ∈ SL2(R) to G act on S by different signs, so
the map Γ̃ → Γ is injective. □

6.3. Conclusion of the proof. We now fill in the deduction, already sketched in
the introduction, of the Interpolation Theorem 1.1 from Theorem 1.2.

We first handle a detail of topology from the discussion of §1.1, namely, the
equivalence between the interpolation statement and its “dual” form. For a Fréchet
space F we denote its continuous dual by F∗; we regard it as an abstract vector
space without topology. Then, for η : E→ F a continuous map of Fréchet spaces,

(47) if η∗ : F∗→ E∗ is bijective, then η is a homeomorphism.

Indeed, following [Trè06, Theorem 37.2], a continuous homomorphism η : E→ F
of Fréchet spaces is surjective if η∗ is injective and its image is weakly closed.
Applying this in the situation of (47), we see at least that η is surjective. It is
injective because the image of η∗ is orthogonal to the kernel of η, and then we
apply the open mapping theorem to see that it is a homeomorphism. In §1.1, we
apply the statement (47) to the map Ψ of Theorem 1.1, with codomain the closed
subspace of s⊕ s defined by

∑
n∈Zφ(n) =

∑
n∈Z φ̂(n).

The other point that was not proved in §1.1 was (4), the actual evaluation of H0

and H1 for the dual of the oscillator representation, namely

(48) dimH0(Γ ,S ∗) = 1, dimH1(Γ ,S ∗) = 0.

Now, S ∗ is precisely the distribution globalization of the dual of SK , i.e. it is theW ∗−∞
of the statement of Theorem 1.2 if we take W to be SK . Therefore Theorem 1.2
reduces us to showing that the multiplicity of W (respectively W cl) in the space of
automorphic forms (respectively cusp forms) for Γ equals 1 (respectively 0).

From 6.1, the K-finite vectors SK are a realization of the (g,K)-module of lowest
weight 1/2, whose complementary representation (SK )cl is the (g,K)-module of
highest weight −3/2. In general, a homomorphism from a lowest weight (g,K)-
module to any (g,K)-module W is uniquely specified by the image of the lowest
weight vector, which can be an arbitrary element of W killed by m; and the dual
statement about highest weight modules is also valid.

It follows that (g,K)-homomorphisms from SK (respectively SclK ) to the space A
of automorphic forms correspond exactly to holomorphic forms of weight 1/2
(respectively, antiholomorphic forms of weight −3/2); the conditions of being killed
bym or p precisely translate to being holomorphic or antiholomorphic. The desired
conclusion (48) now follows from:

Lemma 6.2. (a) The space of holomorphic forms for Γ of weight 1/2 is one-dimensional,
and the space of cuspidal holomorphic forms of this weight is trivial.

(b) The space of cuspidal holomorphic forms for Γ of weight 3/2 is trivial; therefore,
the space of cuspidal antiholomorphic forms for Γ of weight −3/2 is also trivial.

Proof. For (a), the group Γ is conjugate to Γ1(4), for which the space of modular
forms of weight 1/2 is spanned by the theta series θ1/2(z) =

∑
n∈Z e

2πizn2
[SS77].



22 MATHILDE GERBELLI-GAUTHIER AND AKSHAY VENKATESH

For (b), we use the fact that multiplication by θ injects the space of weight 3/2
forms into the space of weight 2 forms. The space of weight 2 cusp forms for Γ1(4)
is, however, trivial; indeed, the compactified modular curve X1(4) has genus zero.
The final assertion follows by complex conjugation. □

6.4. Variants: odd Schwartz functions, higher dimensions, PR1 . We now show
how the same ideas give several other interpolation theorems without changing the
group Γ = ⟨e, f ⟩; it may also be of interest to consider (∞,p,q)-triangle groups.

6.4.1. Odd Schwartz functions. The discussion of Section 6.1 on the even Weil
representation S carries verbatim to its odd counterpart T , whose (g,K)-module
of K-finite vectors is spanned by the translates of the lowest weight vector v3/2 =
xe−πx

2
. As above, we compute using Theorem 1.2, to get

H0(Γ ,T ∗) = C, H1(Γ ,T ∗) = 0.

Indeed, the zeroth cohomology H0(Γ ,T ∗) is identified with the space of modular
forms of weight 3/2, a one-dimensional space spanned by θ3. As for H1(Γ ,T ∗),
its dimension is equal to the multiplicity of T cl in the space of cusp forms on Γ .
The representation T cl has highest weight −1/2, and the vanishing of H1 results
from the absence of cusp forms of weight 1/2 on Γ as in 6.2. We then deduce an
interpolation theorem as in §1, noting that in addition to the δn the distributions
φ 7→ φ′(0) (resp. φ 7→ φ̂′(0)) are also e- (resp. f -)invariant. Arguing as in §1.1 re-
covers a non-explicit version of the interpolation theorem of Radchenko-Viazovska
for odd Schwartz functions, see [RV19, Theorem 7].

6.4.2. Schwartz functions on Rd . We may, similarly, consider instead the represen-
tation Sd of SL2(R) on radial Schwartz functions on Rd . This is, for reasons very
similar to that enunciated in §6.1, a lowest weight representation of the double
cover of SL2(R), but now of lowest weight d/2 generated by e−π(x2

1+...+x2
d ). We claim

that in all cases the corresponding H1 continues to vanish. Indeed, for d even the
complementary representation W cl is finite-dimensional and does not occur in
cusp forms; for d odd, occurrences ofW cl in cusp forms correspond just as before to
holomorphic cusp forms of weight 4−d

2 for Γ (2), and these do not exist for any odd d.
Therefore we find that the values of f and f̂ at radii

√
n determine f , subject only

to a finite-dimensional space of constraints, of dimensional equal to the dimension
of weight d/2 holomorphic forms for Γ (2).

6.4.3. Smooth functions on the projective real line. We consider the space C∞(P1
R)

of smooth functions on P1
R = R∪∞, which we may think of equivalently as either

R×-invariant smooth functions Φ(x,y) on R2 − {0} or smooth functions h(x) on R
with an asymptotic expansion h ∼ c0 + c1/x+ . . . as x→∞; to pass from the former
to the latter we use h(x) = Φ(x,1). We define for Φ ∈ C∞(P1

R) :

an(Φ) =
∫

Φ(x,1)eπinxdx and bn(Φ) =
∫

Φ(1, y)eπinydy,

These integrals are not convergent, but are defined by regularization. For example,
an(Φ) should be understood as the convergent limit of

∫
|x|≤T (Φ(x,1)−Φ(1,0))eπinxdx

as T →∞. In terms of h, they are the (regularized) Fourier transforms of h(x) and
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h(1/x) at half-integers. Integration by parts shows that an,bn decay faster than any
polynomial; in other words, they belong to the space s introduced in §1.

Theorem 6.3. The map h 7→ (an,bn,h(0),h′(0),h(∞),h′(∞)) defines topological isomor-
phisms of C∞(P1

R) with a codimension 5 subspace of s2 ⊕C4.

In principle, the 5 constraints can be explicated by means of the study of the
boundary values of weight 2 Eisenstein series, but the details are a little delicate,
and we did not carry out the computation.

Proof. We obtain Theorem 6.3 in a similar way to Theorem 1.1 – namely, by apply-
ing Theorem 1.2 for the same Γ , but with a different coefficient system. Namely, we
consider the spaceW = C∞(P1

R) and apply Theorem 1.2 to the (g,K)-module WK .
Here, the e-invariants on W ∗ are spanned by spanned by the Φ 7→ an(Φ) together

with Φ(1,0) and ∂yΦ(1,0) (i.e., h(∞) and h′(∞)). To check this, take an arbitrary
e-invariant distribution D on W ; its restriction to C∞c (R) is a periodic distribution
under x 7→ x + 2 and is thus readily verified to be a linear combination of the
distributions an for n ∈ Z. We may therefore suppose thatD vanishes on C∞c (R), and
is so supported at∞, but it is then a linear combination of the various coefficients
ci in the asymptotic expansion of

h(x) ∼ c0 +
c−1

x
+
c−2

x2 + . . .

and a computation shows that only c0, c−1 are invariant under the translation
map x 7→ x+ 2. Symmetrically, W f is spanned by the functionals bn(Φ),h(0),h′(0).
Therefore, to prove the theorem, it is enough to show that (W ∗)e and (W ∗)f add up
to W ∗, and intersect in a 5-dimensional space.

The space W is identified with a reducible principal series of SL2(R), namely
with the extension C→W →D±2 of the discrete series of weight ±2 by the trivial
representation. Either via Theorem 1.2 (plus an auxiliary computation) or directly
from the results of [BO98, §8] one computes that

(49) dimH1(Γ ,W ∗) = 2, H0(Γ ,W ∗) = 5.

in fact the natural map W ∗→ C induces an isomorphism on H1. We apply again
the Mayer-Vietoris sequence (5). It becomes, using subscripts and superscripts to
denote coinvariants and invariants respectively,

(50) 0→H0(Γ ,W ∗)→ (W ∗)e ⊕ (W ∗)f → (W ∗)→H1(Γ ,W ∗)→W ∗e ⊕W ∗f → 0.

The constant function in W is e-invariant and f -invariant. By evaluating at it
we see that both W ∗e and W ∗f are at least one-dimensional. But then comparing

(50) and (49) we find that the surjective map H1(Γ ,W ∗)→ W ∗e ⊕W ∗f must be an

isomorphism, and so (W ∗)e ⊕ (W ∗)f → (W ∗) is surjective with 5-dimensional kernel
as required. □
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